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Growth and equilibrium of short gravity waves 
in a wind-wave tank 

By W. J. PLANT AND J. W. WRIGHT 
Ocean Sciences Division, Naval Research Laboratory, Washington D.C. 20375 

(Received 8 September 1976) 

Temporal and spatial development of short gravity waves in a linear wind-wave tank 
has been measured for wind speeds up to 15 m/s using microwave Doppler spectro- 
metry. Surface waves of wavelength 4-1 cm, 9.8 cm, 16.5 cm and 36 cm were observed 
as a function of fetch, wind speed and wind duration. The waves grew exponentially 
from inception until they were about 10 dB smaller than their maximum height, and 
the temporal growth and spectral transport (spatial growth) rates were about equal 
when the wave amplitude was sufficiently small. The amplitude of a short gravity wave 
of fixed wavelength was found to decrease substantially a t  winds, fetches or durations 
greater than those a t  which the short gravity wave was approximately the dominant 
wave; such phenomena are sometimes referred to as overshoot. The dominant short 
gravity wave was observed to reach a maximum amplitude which depended only on 
wavelength, showing that wave breaking induced by an augmented wind drift cannot 
be the primary limitation to the wave height. Waves travelling against the wind were 
observed for wavelengths of 9.8 cm, 16.5 cm and 36 cm and were shown to be generated 
by the air flow a t  low wind speeds. 

Measured initial growth rates for 16.5 cm and 36 cm waves were greater than expec- 
ted, suggesting the existence of a growth mechanism in addition to direct transfer 
from the wind via linear instability of the boundary-layer flow. Initial temporal 
growth rates and spectral transport rates were compared to yield an experimental 
determination of the magnitude of the sum of nonlinear interactions and dissipation 
in short gravity waves. If the iteady-state energy input in the neighbourhood of the 
dominant wave occurs a t  the ' asured initial temporal growth rates, then most of the 
energy input is locally dissipate T ; relatively little is advected away. Calculated gravity- 
capillary nonlinear energy transfer rates match those determined from initial growth 
rates for 9.8 cm waves and the gravity-capillary wave interaction continues to be 
significant for waves as long as 16.5 cm. For longer waves the gravity-capillary inter- 
action is too small to bring the short gravity wave to a steady state when it is the 
dominant wave of the wind-wave system. 

1. Introduction 
When wind blows across water, waves grow until a dynamic equilibrium is achieved 

between the wind, dissipation forces and interactions among the waves themselves. In  
such a steady state in a linear wave tank the spectrum of the wave system is sharply 
peaked a t  some dominant wavelength and as the fetch or wind speed increases, the 
dominant wave grows in amplitude and shifts to lower frequencies. The objective of 
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FIGURE 1. The microwave scattering geometry and wave-tank configuration (not to scale). 

the experiments described in this paper was to study the temporal growth of these 
short gravity waves before they reach their steady state as well as the dependence of the 
steady-state waves on fetch and wind speed from their inception until they become 
somewhat shorter than the dominant wave of the system. Short gravity waves of 
wavelength 4.1 cm, 9-8 cm, 16.5 cm and 36 cm were selected. The principal measure- 
ment technique was microwave Doppler spectrometry using focused parabolic 
antennae, a technique discussed in some detail in the next section. 

2. The parabolic antenna as a wave probe 
The Doppler spectral measurements reported here were made in botch backscatter 

and forward-scatter modes with parabolic antennae of diameter D = 6 i  cm and 143 
cm and ratio of focal length to diameter of Q. Focusing such an antenna (by changing 
the axial position of the feed) minimizes the curvature of the phase fronts a t  the focus. 
If the antenna is focused at  the water surface and the range R to the surface is less than 
D2/A,, where A, is the microwavelength, then the surface is said to be under-illumi- 
nated; i.e. almost all the incident radiation is contained within the central Fresnel 
zone. In this sense the incident phase fronts are nearly planar. Now, if a uniform plane 
wave is incident on a plane surface slightly roughened by a surface displacement 
y(x ,  y, t ) ,  it is well known that the scattered power spectral density is proportional to 
the surface wave power spectral density F .  That is, for incidence at a depression angle 
0, and reception at  a depression angle 0, as shown in figure 1, we have 

k, = [ko(cos 0i - cos Or),  O,] (1) 

and P(koo, ei, or,  0)  F(k,, 01, (2) 
where k, and k, are the Bragg wave vector and the microwavenumber respectively, 
P is the scattered power spectral density, and F is the surface displacement spectrum. 

In the finite region illuminated by the parabolic antenna the relationship (2) is 
modified so that a small group of surface waves with wave vectors in the neighbour- 
hood of k, contribute. The effect can be described by a convolution of the power 
spectrum of the surface displacement with an antenna illumination function V(kz, kw) 
(Larson & Wright 1974): 

p(kOc0, e i , e r ,  0 )  =j101, 0,) [ ~ ( k ,  0 )  V(k,-k)dk, (3) 
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where f(Si, 0,) is a function also of the dielectric constant and polarization determinable 
from first-order scattering theory (Wright 1966). The resolution in wavenumber for 
the antenna used as a wave probe, which is determined by the antenna function V ,  is 
attributable to two effects. First, the residual curvature of the phase fronts is an 
important source of broadening (Wright & Keller 1971). Overillumination, i.e. irradia- 
tion of many Fresnel zones as in the far field, is not the best illumination for Bragg 
scattering measurements. Second, the finite size of the focused spot broadens V in an 
obvious way as does the, perhaps less obvious, influence of the longitudinal electro- 
magnetic field which must exist owing to the restricted size of the focused spot. These 
fields, in addition to contributing to the broadening of V ,  also modify the function 
f(O,, Or). Since we do not report on absolute values of the scattering cross-section, this 
modification is not of much concern to us here. 

In the case of horn antennae, a form for V may be calculated (Wright & Keller 
1971) which gives fair agreement with measured spectra. In  fact, it  is a good deal 
easier, and probably more accurate, to measure V using scattering by monochromatic 
water waves. In this case F is very narrow compared with V ,  and w and k are uniquely 
related by the dispersion relation for gravity-capillary waves. This is well known 
provided that the water surface is clear of surface films, which in a wind-wave tank is 
conveniently accomplished by blowing the films over an overflow baffle. Alternatively, 
if scattering measurements are made a t  several depression angles, the dispersion 
relation may be determined from the scattering measurements themselves since the 
Doppler shift in first-order Bragg scattering is identically the frequency of the Bragg 
wave. In either case the ratio of the scattered power to the square of the monochro- 
matic wave height, measured simultaneously as a function of water-wave frequency, 
yields a quantity proportional to V(kz,  0). Relative values of V(kz,  0)  for the Bragg 
wavelengths discussed here are shown in figure 2 (other examples are given by Duncan, 
Keller & Wright 1974). The patterns indicated by the dashed line and the one having 
kB = 1.54 cm-1 correspond to backscattering modes using a single antenna while 
the other patterns were obtained with two antennae in a forward-scatter (bistatic) 
mode. 

Proportionality between the scattered electromagnetic field and the Bragg wave 
amplitude is very nearly tautological for sufficiently small waves although an experi- 
mental verification has been given by Wright (1966). The diffuse scattering from the 
waves, however, reduces the specular reflexion coefficient by an amount proportional 
to  the mean-square surface displacement (e.g. Valenzuela 1970). This reduces the 
effective mean field a t  the surface and so reduces the intensity of the first-order Bragg 
peak. The dimensionless quantity which governs this reduction is the electromagnetic 
roughness r ,  which for bistatic scattering is given by 

r2 = #(ko h)2(sin2 Si + sin2 Or), (4a) 

where h is the r.m.s. surface displacement. Beard (1963, 1967) found, for forward 
scattering from both ocean waves and waves in tanks, that the scattered power is 
accurately proportional to the variance in surface displacement provided that r2 < 0.2. 
The scattered power deviates from this proportionality by 3 dB when r2 2 0.4. When 
the Bragg wave is the dominant wave (4a)  can be rewritten as 

26 

r2 = &(ko/kB)2si [sin2 8, + sin2 Or] ,  (4b) 
F L M  82 
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FIGURE 2. Experimentally determined antenna patterns in k space. Bragg wavenumbers k~ and 
wavenumber resolution Ak, are indicated. Two different sets of scattering parameters were used 
for ks = 0.64 cm-l. 

where s2 is the mean-square slope of the dominant wave. In  our tank s2 has a maximum 
value of about 0.025 (Keller, Larson & Wright 1974). Thus for the scattering para- 
meters which we used here (table 2), 2.5 x 10-3 <' r2 < 6 x 10-2 when the Bragg wave is 
the dominant wave. As the dominant wave becomes longer than the Bragg wave the 
electromagnetic roughness increases in proportion to the dominant wavelength, if the 
slope ofthe dominant wave is constant. Thus, in the least favourable case, the criterion 
based on Beard's (1963, 1967) measurements is satisfied for dominant wavelengths at 
least twice the Bragg wavelength. 

Doppler side bands, of both electromagnetic and hydrodynamic origin, occur at  
second order (Hasselmann 1971 ; Barrick 1972; Valenzuela 1974). Symmetrically 
placed side bands are due to the essentially free wave components of the wave system. 
In scattering from short gravity-capillary waves they occur at about 4 2 Hz about the 
first-order Bragg peak for a wide range of dominant and Bragg wave frequencies 
(Wright 1977). Resonant harmonic Doppler peaks of hydrodynamic origin occur, at  
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second order and for relatively directional spectra, a t  twice the frequency of the wave 
twice as long as the Bragg wave. They may be thought of as due to bound rather than 
free waves. There is a similar peak of electromagnetic origin but it is not significant for 
depression angles of 10" or greater (Valenzuela 1974). 

3. Auxiliary measurements of wiyd and waves 
The measurements were made in the wave tank (figure 1)  described by Duncan et al. 

(1974) and Larson & Wright (1975), which was; however, used in a configuration in 
which the t,otal length of air channel was kept fixed and the fetch varied by exposing a 
variable portion of the water surface to the air flow. This facilitated precise compari- 
son of microwave measurements at different fetches by eliminating the need for 
repeated boresighting of the antennae. A second feature is that the fetch is varied 
without changing the position at  which the wind field is measured. The values of v,, 
the maximum wind speed along a vertical profile at  mid-channel, and u ~ ,  the air 
friction velocity obtained by curve-fitting to the usual logarithmic profile 

- 
v(z )  = (u,/0.41) In (z /xo) ,  (b) 

were used to measure the mean wind. The length of air channel, except where noted, 
was about 35 times the air-channel height. At this distance the increment in v, with 
the length of channel is small. This is demonstrated in figure 3, where values of v, 
measured as a function of fetch for air-channel lengths of 1 1 m and 16 m are plotted us. 

26-2 
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Symbols as in figure 3. 

the shutter number, a number denoting a calibrated setting of the position of the 
intake shutter on the centrifugal blower. Turbulent intensities in the free stream a t  the 
air-channel lengths were 1 yo and less at  the high wind speeds. 

Values of u* from measurements a t  both air-channel lengths are plotted vs. vm in 
figure 4. At low winds we found u* = 0 . 0 5 ~ ~  in agreement with previous wave-tank 
work (Gottifredi & Jameson 1970). At higher winds u* increases more rapidly than 
linearly with vm, also in agreement with most wave-tank studies. An empirical fit to 
the data, the solid line in figure 4, is 

?A+ = o.ozvi,  (6) 

which is nearly the same as the expression derived by Hidy & Plate (1966). 
The dependence of u* on fetch was measured in some detail for vm = 15.5 m/s 

(figure 5). The rapid increase in.u, with fetch for fetches less than 1 m may be associated 
with thezapid development of the wave field at  high winds. The presence of spray and 
the greater height of waves, which prevents a sufficiently close approach to the surface, 
make precise values of u* difficult to obtain a t  high winds and long fetches. 

We previously (Larson & Wright 1975) worked a t  the open end of the air channel 
and noted that the value of u* measured 1 m downwind of the end of the channel was as 
much as 10% greater than that measured at the end of the channel. In the present 
work a polyethylene cover 2 m long and 0.005 cm thick terminated the top of the 
air channel where the antennae viewed the water so that this increment iFp u* was 
avoided. 
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FIUURE 5. Friction velocity as a function of fetch for v, = 15.5 m/s. 

The shutter number, as it is easily and precisely measured, was the primary indicator 
of wind speed. The rotational frequency of the blower, measured stroboscopically, and 
a reference wind speed measured with a Pitot-static tube at  the air-channel inlet were 
also recorded to ensure reproducibility of the wind speed settings. The air friction 
velocity, used as the measure of wind speed below, was obtained from the shutter 
number using the solid curve in figure 4 and the curve for an air-channel length of 
11 m in figure 3. As explained previously, this procedure provided a fetch-inde- 
pendent measure of wind speed, but does not imply the absence of a dependence of u* 
on fetch and/or axial position in the tank, such as that observed by Mitsuyasu & Honda 
(1975), when these are varied together. As we used the same length of air channel at  all 
fetches, the effect of such changes tended to be minimized in our configuration. In 
order to isolate possible influences of beach reflexion ( § 5 ) ,  in the case of the measure- 
ments on 16.5 cm waves, the fetch was varied by moving the antennae along the 
tank but the values of u* used for these waves are those measured as described 
above. 

A capacitance wave probe which consisted of a single strand of number 38 magnet 
wire was used in conjunction with the microwave measurements. This was placed in 
the water along with a ground wire and used as part of the input impedance of a 
circuit operated at  50 kHz. The frequency of the dominant wave is a convenient, single 
measure of the wind-generated wave field. These frequencies, obtained from spectral 
analysis of the capacitance-probe measurements, are shown in figure 6 as a function of 
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Hidy & Plate (1966) 
& w-7 
Fetch (m) fm(Hz) Fetch (m) f,(Hz) 

2.06 6.6 2.0 6.4 
3.29 4- I 3.2 4.0 
5-73 3.2 5.0 3.2 
8-14 2.6 7.5 2.8 
9.40 2.4 9-7 2.4 

TABLE 1 

This work 

u* and the fetch and are compared, for u* = 50 cm/s, with the measurements of Hidy 
& Plate (1966) in table 1. It is noteworthy that our dominant wave frequencies agree 
well with those of Hidy & Plate (1966) even though an exhaust fan rather than an 
inlet fan and a much higher wind channel were used in the latter work. 
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l(cm-') A&m) fo(GHz) @&W Udeg)  D (cm) 
1-84 4.1 4.376 30 180 61 
0.64 9-8 4.376 80 26 61 
0.38 16.6 4-376 60 26 61 
0.176 36 1-85 68 26 143 
0.64 9.8 1.86 144 36 143 

TABLE 2 

4. Doppler spectra and their interpretation 
Figure 1 shows the experimental arrangement for a bistatic condition and the micro- 

wave parameters used to observe the various Bragg waves are given in table 2. In  the 
table, A, = 2n/k, is the Bragg wavelength and fo is the microwave frequency, while 
D is the antenna diameter. When 0, = 180" - Bi, only one antenna was used. The values 
given in table 2 do not quite fit (1), indicating that the antmna bore sighting did not 
exactly correspond to the nominal depression angles. 

Examples of steady-state Doppler spectra obtained at a 8.4 m fetch and various 
wind speeds for 16.5 cm waves are given in figure 7. For Bragg wavelengths of 9.8, 
16.5 and 36 cm, the spectral resolution was 0.2 Hz and the averaging time was 25 min; 
for A,  = 4-1 cm, the spectral resolution was 0.4 Hz and the averaging time was 12.5 
min. These numbers lead to nominal 95 yo confidence levels for the spectral estimates 
of about & 1.0 dB. Detailed features of the spectra were generally found to be repro- 
ducible within these limits. 

The Doppler frequencies shown in figure 7, i.e. the abscissae, are referred to the 
frequency of radar return from stationary objects. In  order to avoid folding of the 
spectrum, this frequency was actually offset from d.c. by about 35 Hz. The figure 
shows that at  the lowest winds both upwind- and downwind-going waves are present 
on the water surface and yield sharp first-order Bragg peaks a t  the water-wave fre- 
quency of about 3-2 Hz. As the wind speed is increased, the downwind wave grows 
much faster than the upwind wave until, a t  u* N 34 cm/s, it becomes the dominant 
wave of the system. With increasing wind speeds, higher-order lines, labelled B,, B, 
and B, in the figure, appear, while the first-order Bragg line decreases in intensity. 
The line labelled A was consistently observed during our experiments but its origin is 
unknown. It does not grow as fast as the Bragg lines, however, so its presence is vir- 
tually indiscernible except a t  the lower wind speeds. The bump on the side of the down- 
wind Bragg peak at u* = 23 cm/s, on the other hand, is easily explainable. It occurs 
at the dominant wave frequency and is a result of the finite antenna patterns used in 
the experiments. Thus, as the Bragg wave approaches the frequency of the dominant 
wave, the integrand F V in (3) is nearly the same for both waves and the dominant 
wave is also observed. 

Figures 8(a)-(d) give examples of the spectral intensity of the downwind Bragg 
wave as a function of u* with the fetch as a parameter for each wavelength studied. The 
ordinates are the power spectral density of the Bragg line relative to the average maxi- 
mum value over all fetches. These intensities were determined by simply measuring 
the heights of the lines, although the Bragg line spectral intensity is actually propor- 
tional to the area of the Doppler spectral peak. The line shape was always determined 
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FIGURE 7. Microwave Doppler spectra of 16.5 cm waves at  8.4 m fetch for various wind speeds. 

by the antenna pattern, however, so that heights and areas were proportional to each 
other for a given antenna arrangement. Absolute measurements of wave amplitude 
were obtained with a capacitance probe and/or deduced from previous slope measure- 
ments (Keller et al. 1974). 

If the frequency of the first-order Bragg line is measured and multiplied by the 
Bragg wavelength, the phase speed of the water wave is determined. Phase speeds 
obtained in this manner for 16.5 cm waves areshown in figure 9 as a function of u* 
with the fetch as a parameter. Note that the phase speeds of both upwind and down- 
wind waves are wind-speed dependent. The speeds of the upwind waves decrease in 
magnitude monotonically with u* and are not measurably dependent on fetch. For 
downwind waves, however, the phase speeds maximize at  a wind speed which depends 
on fetch. Similar behaviour was observed for the other wavelengths studied. Our 
initial interpretation is that the upwind waves are free waves which are slowed by the 
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wind drift and perhaps by inertial pressure but that the downwind phase speeds are, in 
addition, modified by effects of finite wave amplitude. A more detailed study of the 
phase speeds of short gravity waves is left to the future. 

The normalized first-order Bragg peak intensities for 9-8 cm Bragg waves observed 
with 4.35 GHz and 1.85 GHz microwave systems, respectively, are compared in 
figure lO(a). The square of the electromagnetic roughness is 5 times greater a t  the 
higher microwave frequency but the measured spectral intensities are identical, indi- 
cating that higher-order scattering effects do not significantly influence the first-order 
intensity. Surface displacement spectra $( f, u*) were obtained from capacitance-probe 
measurements made simultaneously with the Doppler spectral measurements at  
4.35 GHz on 16.5 cm Bragg waves at  a fetch of 8.4 m. Values of $(fB, u*)/$m,x are 
seen (figure lob) to be very close to the corresponding values of P+/Pm,, as expected if 
the Bragg peak intensity is proportional to the spectral intensity of the Bragg wave. 
Note that the maximum in the probe spectra appears to occur at  a slightly higher wind 
than that in the Bragg peak intensity; since 

this is consistent with the decrease in phase speed with increasing u* a t  this fetch 
(figure 9). Likely contributors to the excess in $(fB, u*) over P+ at higher winds are the 
spatial harmonics of waves longer than the Bragg wave. Contributions from these 
harmonics are indistinguishable from those due to free waves in the probe spectra but 
harmonic contributions are excluded from the first-order Bragg peak. Since the case 
of 16.5 cm waves measured at 4.35 GHz was the least favourable case with respect to 
electromagnetic roughness it is also possible that the Bragg peak is diminished some- 
what owing to the reduced reflexion coefficient a t  the highest winds. 

Figures 8 (a)-(d) show that the amplitude ofa given Bragg wave, when it reaches its 
maximum height as u* is varied, is nearly independent of the fetch. We examined this 
effect in separate series of measurements, being careful to keep all microwave settings 
constant. F’igure 11 shows the maximum mean-square amplitudes of the Bragg waves 
vs. the wind speed at which the maximum occurs at various fetches. The absolute 
values of the amplitude shown in this figure were determined by integrating the 
capacitance-probe spectrum for A, = 36 cm and by optically measuring the slope when 
the Bragg wave is the dominant wave (Keller et al. 1974) for the other three wave- 
lengths. We believe that this combination of measurements yielded the most accurate 
wave heights since the capacitance probe is unreliable at high frequencies and the 
optical method yields questionable results at wind speeds where spray is present as it is 
at short fetches when 36 cm waves are dominant. 

The breaking of short gravity waves in the presence of wind drift has recently been 
treated by Banner & Phillips ( 1  974), who showed that an oscillating, augmented wind 
drift occurs as the result of interaction with the orbital velocity of the wave. The aug- 
mented component of the wind drift and the drift itself increase with wind speed. 
Hence the wave amplitude at which the particle speed equals the phase speed decreases 
with increasing wind. If one uses the measured surface drift (3-4 yo of the wind speed) 
the theory of Banner & Phillips (1974) predicts that the maximum mean-square wave 
height should decrease by more than 30 dB over the range of wind speeds in figure 11.  
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In  fact, these wave heights are sensibly independent of wind speed at all four wave- 
lengths. Thus the amplitude of short gravity waves is not limited by wave breaking 
induced by the wind drift (see also Wright 1976). 

5. Upwind-travelling waves 
The ratio of the intensities of the upwind and downwind waves is shown in figure 12. 

No upwind wave was observed for A, = 4-1 cm. We measured the reflexion of waves 
in the tank without wind, due essentially to the beach, using monochromatic Bragg 
resonant waves: the range of reflected-to-incident ratios observed is shown in figure 12. 
This reflexion was much less than the maximum observed for any of the waves a t  low 
winds. Furthermore, in the case of the 16.5 cm waves, the distance from the point of 
observation to the beach varied from about 10.5 m at a fetch of 1.6 m to less than 4 m 
at a fetch of 8.4 m. Since upwind-going waves are damped by the wind the amplitude 
of these waves would decrease with increasing distance from the beach if beach reflexion 
were the cause. In  fact the maximum ratio of upwind to downwind wave intensity waa 
independent of this distance. At higher winds the ratio of upwind to downwind wave 
intensity was less than the beach reflexion, but a t  u* = 85 cm/s it was necessary to 
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FIQURE 11. Maximum mean-square wave amplitude ws. the wind speed at which it occurs 
for various fetches. 

block the waves completely with a board placed less than 1 m downwind of the illumi- 
nated area in order to produce a discernible difference in the magnitude of the upwind 
peak. Clearly, beach reflexion does not play a crucial role in the generation of the up- 
wind wave. 

We also made a series of measurements in which we reduced the air flow to as near 
zero as possible while leaving the fan running. These measurements showed that any 
vibration-induced 16.5 em waves not caused by the air flow are at  least 10 dB smaller 
than those shown in figure 7 for u* = 7 cmls. The upwind-going wave a t  light winds is 
thus presumably caused by interaction with the air flow. The interaction cannot, of 
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FIGURE 12. Ratio of upwind wave intensity to downwind wave intensity v.9. wind speed a t  various 
Bragg wavelengths and fetches. 

course, be a resonant interaction with turbulent fluctuations (Phillips 1967) since 
upwind and downwind waves are generated more or less equally. The data seem more 
consistent with the idea that the production of upwind waves a t  light winds is due to 
localized, non-resonant pressure disturbances. 

6. Temporal growth 
Temporal growth rates were measured for 9.8, 16.5 and 36 cm waves; growth rates 

of 4.1 cm waves were measured in an earlier study (Larson & Wright 1975). The method 
was similar to that used previously (Larson & Wright 1976) except that we filtered 
to discriminate against the dominant wave in cases when the Bragg wave was, in the 
steady state, longer and smaller than the dominant wave. 

Measured initial growth rates for the three Bragg waves are shown in figure 13 as a 
function of wind speed. These data were taken at several fetches as indicated. In  all 
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FIGURE 13. Temporal growth rates v.9. wind speed. 

cases, initial growth curves were exponential over several orders of magnitude as 
shown for A, = 36 cm in figure 14(a). The growth rates for A, = 9.8 cm and 16-5 cm 
are not measurably dependent on fetch (figures 13a, b) .  Growth rates for A, = 36 cm, 
however, increase with decreasing fetch (figure 13c) .  This behaviour may indicate 
transfer from faster growing, shorter waves. Temporal growth according to such a 
mechanism can be qualitatively modelled by a coupled, two-wave system: 

dli;/dt = -/& + a12 F1 F2, ( 8 4  

(8b)  dF2/dt = p2  F, - a 1 2  F1 F2 - a 2 2  F2,. 
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The computed temporal development of this two-wave system for parameters which 
yield a steady-state wave Fl about 8 dB larger than F2 is shown in figure l4(b). The 
small negative growth rate for Fl is an artifice introduced to stabilize the coupled 
system of equations; it may be thought of as a surrogate for spectral transport or trans- 
fer to yet another wave. The f i s t  point to be noted in figure 14 ( b )  is that the growth of 
Fl is essentially exponential even though the energy input has the form of a second- 
order wave-wave interaction. A number of similar calculations using growth, transfer 
and dissipation parameters other than those of figure 14(b) convince us that this is 
often the case. Thus the observed exponential growth over several orders of magnitude 
(figure 14a) is nonetheless consistent with growth by transfer from shorter waves. A 
second point is the obvious similarity of calculated curves in figure 14 (b )  to the meas- 
ured histories for selected pairs of waves: 36 cm and 16.5 cm in the case of figure 14 (c), 
16.5 cm and 9.8 cm in figure 14(d). The abscissa in figures 14(b)-(d) is &t,  where pz is 
the initial growth rate of the shorter wave in each case. The pairs of histories were not 
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taken at exactly the same fetches but they were close enough for qualitative compari- 
son. The relative steady-state levels in figures 14 (c) and ( d )  are those observed in the 
steady-state measurements of Doppler spectra. The overshoot in the observed 
histories of the shorter waves could also result from a diminished influx from the wind 
or augmented capillary waves drawing energy away via the gravity-capillary inter- 
action. 

We compare the growth rates measured here with those obtained in other studies at 
similar wind speeds and wavenumbers in figure 15. The solid lines connect data points 
taken at  the same values of u*. The dashed lines are representations of the empirical 
relation 

p = 0.04~: I%/C - 4vk2, (9) 

where c is the phase speed of the wave and v is the kinematic viscosity of water. The 
dashed curves were obtained under the assumption of no wind-speed dependence for c. 
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Note that (9) fits the data taken by Larson & Wright (1975)’ the open circles, quite 
well for u* = 26 cmls. At higher wind speeds, (9) lies above the data owing to the 
neglect of the wind-speed dependence of c ;  if measured values of c are used instead, the 
open circles are once again well fitted. The data obtained in this study, the closed circles 
with error ba.rs, fall above the curves obtained from (9)’ suggesting again that an 
additional growth mechanism, perhaps flow separation (Chang, Plate & Hidy 1971), is 
present for longer waves. Thedata of Hidy & Plate (1966)’ the open triangles, and those 
of Gottifredi & Jameson (1970)’ the open squares, agree well with our latest results. 

Miles’ ( 1 9 5 9 ~ )  theory of wave growth yields the following expression for the growth 
rate: 

p = pa t;uz k/pw K ~ C  - 4vk2, (10) 

where pa and pw are the densities of air and water, K is von K&rm&n’s universal turbu- 
lence constant, c is the zero-wind phase speed, and t; is a parameter which Miles calls 
p. For the range of wind speeds and wavenumbers shown in figure 15, Miles finds that 
is only slightly wind-speed dependent and has a value of about 3.3. This yields 0.027 
x u$k/c for the first term in ( 10) in rather good agreement with the empirical relation (9) 

but well below the data obtained for the longer waves. For most conditions prevailing 
in these experiments c < 5u*, so that the critical layer presumably lies within the 
viscous boundary layer. Thus a viscous stability theory, rather than the theory leading 
to (lo), should be applied. However, neither Miles’ (1962) nor Valenzuela’s (1976) 
calculations extend to waves as long as 36 cm. 

7. Spectral transport 
The initial temporal growth of waves was observed to be exponential, as discussed 

above. The corresponding steady-state growth rate is the spectral transport rate 
(cg /F)  aF/ax, which is equal to the initial temporal growth rate if the net energy flux to 
the wave is the same in the steady state as in the initial temporal growth. Of course this 
equality will be observed only if the amplitude of the wave is small enough that the 
nonlinear interactions responsible for eventual equilibration of the wave are negligible. 
We calculated spectral transport rates from our data by plotting the spectral intensity 
as a function of fetch as shown in figure 16, obtaining F-IdFfdx from these curves 
and multiplying by the group speed of the waves. 

Note in figure 16 that in most cases the development of these short gravity waves 
with fetch is exponential from inception until the wave is about 10 dB less than its 
maximum value. The only significant exception is the case of 16.5 cm waves at very 
light winds. It was shown above (figures 7 and 12) that under these conditions an 
upwind wave is generated which is nearly equal in amplitude to  the downwind wave. 
This observation suggested that a t  light winds 16.5 cm waves are generated by localized 
turbulent pressure disturbances. The different generation mechanism in this case 
could cause the observed non-exponential fetch dependence. It is not known why this 
mechanism should be selectively stronger for the 16.5 cm wave than for the other wave- 
lengths. Perhaps this is connected with the size of the eddy responsible for the turbu- 
lent generation; 16.5 cm is about one-half the height of the air channel. 

The phase speed of the downwind waves depended on both wind speed and fetch in a 
complex ahd, as yet, not entirely explicable way. To retain a reasonable wind-speed 
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FIGURE 16. Normalized first-order Bragg peak intensity for several Bragg waves as a function of 
fetch at various u* values. 

dependence of the group speed for the purpose of calculating spectral transport rates 
we calculated the group speed using a variational method (Miles 19598) and the 
requirement of continuity of normal stress at  the air-water interface. We obtained for 
the radian frequency w as a function of wind speed 

w = (gk + Tka)i + k. U( - 0*044h), (11) 
where g is the gravitational acceleration, T is the surface tension divided by the density 
of water and 

Here V, is the surface drift and zy is the roughness length in the water. Differentiating 
(11) with respect to k, we get 

('3) cs, = c i  + U(  - 0.044h) + ( P ~ / ~ & L * / K ,  
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where ci  is the group velocity of irrotational waves. We have assumed that U .is 
parallel to k and that z$' < 0.044h. Note that the wind-speed dependence of cg is rather 
weak, so that if (13) is not exact, little error in the calculated spectral transport rates is 
expected . 

Figure 17 shows the calculated spectral transport rates as a function of wind speed, 
with the fetch as a parameter, for the various Bragg waves. The crosses in the figure 
indicate measured values for the initial temporal growth rates; the values for 4.1 cm 
waves are from Larson & Wright (1975). The initial rise of the spectral transport rate 
coincides well with the measured temporal growth rates except for 16.5 cm waves at  
very low wind speeds, where turbulent wave generation is suspected. For friction 
velocities above about 30 cm/s the spectral transport rates coincide fairly well for these 
waves also. When the waves are small, then, the measured initial temporal growth 
rates are about the same as the rate of growth of the waves in the steady state. 

8. Steady-state energy balance 
The influx from the wind to a given wave must be balanced by transfer to other 

wavenumbers, dissipation or growth of the wave. The transport equation states this 
balance; in the case of growth along a single Cartesian co-ordinate x, along the axis of 
our tank, it may be written (Hasselmann 1968) as 

a q a t  + cg aFlax = PF + s,, + s,, (14) 

where S,, and S, are the nonlinear transfer and dissipation respectively and we have 
assumed wave growth a t  a rate PF,  as this is what we observed when the wave was 
small. Our results do not provide a direct measure of the energy input to a wave when 
it is near its maximum amplitude. However, if we assume that the energy input in the 
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steady state is always given by the initial temporal growth rate, we can obtain values 
for S, + S,, from (1) .  Thus, multiplying the spectral transport rate and the temporal 
growth rate by F/Fm, where Fm is the maximum spectral intensity, and subtracting 
the latter from the former yields experimental values for (8, -I- 8,J/Pm for the various 
Bragg waves (figure 18). I n  each part of figure 18, the top lines connecting data 
points trace the values of ,8F/Fm, the central lines are (c,/Fm)8F/ax and the lower 
curves give the difference between the other two. The spectral transport appears 
to be relatively small for short gravity waves whose frequencies are near that 
of the dominant wave. The input from the wind must be nearly locally balanced 
by nonlinear interactions and dissipation. Thus, though the wave system is growing 
with fetch, an almost local equilibrium exists for waves near the dominant wave 
frequency. 

The assumed steady-state input to waves longer than about 10 cm is, however, too 
large to come directly from the wind according to the notion of Larson & Wright (1 975) 
that short waves support the wind stress. Thus, using (9) for the influx rate and follow- 
ing Larson & Wright ( 1  975), it is easy to show that the ratio of the stress supported by 
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the waves to the wind stress is 0.04z/(p,/pw), where %is the mean-square slope of the 
dominant wave. For s: = 0.02 as observed (Keller et al. 1974), this ratio is about unity. 
The initial temporal growth rates for the 36 cm waves, however, exceed those given by 
(9) by a factor of 5 or 6 in some cases. Thus wave systems in which the 36 cm waves are 
dominant would, implausibly, support a stress greater than the wind stress. We infer 
that either the energy influx in the steady state occurs at a rate less than that of the 
initial temporal growth or, again, the 36 cm waves grow by transfer from shorter 
waves. For waves shorter than 10 cm the data give no indication of these influences on 
the growth rate. 

Since the energy influx in the steady state is difficult to measure, theoretical deter- 
mination of the nonlinear transfer would be particularly useful. The solid and dashed 
lines not connecting data points in figure 18 are theoretical curves of sn,/Fm based on the 
nonlinear gravity-capillary wave interaction theory developed by Valenzuela & 
Laing (1972). In  this theory, energy transfer occurs at second order between waves 
which satisfy the resonance conditions 

w1 = w2+w3,  k, = k2+ k3. (15) 

For the short gravity waves studied here, the minus sign applies and the resonance 
condition states that energy transfer from short gravity waves occurs primarily 
through interaction with capillary waves whose group speed is equal to the phase 
speed of the gravity waves. Thus, if we'specialize the theory to the case where 

k, k,, k,, w1 < w2, w, and U is parallel to k 

and assume a C k 4  cos2 0 spectrum for the capillary waves, where C is constant, we 
obtain 

s,, = 0.2 C2kq- 306 CF(k,)  kt. (16) 

The solid theoretical curves in figure 18 show this result for the various Bragg 
waves; the value of the constant C is 0.01 as measured photometrically by Wright & 
Keller (1971). Since the approximations preceding (16) are not satisfied for A, = 4.1 cm, 
no theoretical curves are shown for this wavelength, but the size of the interaction 
in this case can be obtained from figure 2 of Valenzuela & Laing (1972). This graph 
yields a value for snJFm of -0.53 s-l a t  the spectral peak for A = 4.1 cm. Thus the 
second-order gravity-capillary interaction yields energy transfers of the right order of 
magnitude but somewhat smaller than the (snl + sD)/Fm values obtained experimen- 
tally for 4-1 cm, 9-8 cm and 16.5 cm waves. The effect of the wind drift on the dispersion 
relation is not accounted for in (16). A result of the selectively greater advection of 
shorter waves by the wind drift is that the capillary waves parasitic to a given short 
gravity wave are longer, and hence larger, in the presence of the wind drift. This 
increases the strength of the second-order interaction in proportion to the increased 
spectral intensity of the parasitic capillary wave. We can estimate the influence of this 
effect by using (1  1) for all frequencies w in (15). The dashed lines in figure 18 show how 
this modification changes the computed energy transfer, which is now large enough to 
match the measured values of (c, aF/ax -pF)/Fm even for 16.5 om waves. 

Although figure 18 indicates that the second-order gravity-capillary wave inter- 
action plays an important role in the equilibration of short gravity wavesof wavelengths 
less than about 20 cm, the possibility that other types of interaction are involved 
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cannot be ignored. Thus, for example, the overshoot of wave amplitude as a function 
of wind speed (figure 8), duration (figure 14) and fetch (figure 16) suggests the impor- 
tance of other interactions. For all these overshoot phenomena, depletion of wave 
energy is coincident with the presence of a longer, larger wave. Perhaps a reconsidera- 
tion of second-order wave-wave interactions in the presence of the wind drift would 
yield an analogue of the two-scale momentum transfer discussed by Valenzuela & 
Wright (1976). The gravity-capillary wave interaction could still play a major equili- 
brating role in this process as longer waves become dominant. 

In any case, other interactions must become paramount a t  longer wavelengths 
where, as figure 19 and equation (16) show, the magnitude of the gravity-capillary 
interaction becomes small. One candidate is the third-order gravity-gravity wave 
interaction. We may estimate the size of this interaction for A, = 36 cm using the 
scaling relationship given by Hasselmann et al. (1973). Spectra in that paper were 
fitted to the following form: 

F ( f ,  6) = ag2(2n)-4f-5$.’(f/Ymf/fm, e), (17) 
where a is Phillips’ ‘constant ’, f, is the peak frequency and $.‘ is the shape function of 
the spectrum. 

Thus the scaling equation given there may be written for our purposes in the form 

SnJFrn = (2~)~aYrn  [$(.f/frn)/$.’(1, 011, (18) 
where $(f/.frn) is a dimensionless function depending on f .  Spectra obtained in our 
wave tank were generally more peaked and had less high frequency tail than those 
obtained on the North Sea. If we assume, though, that the ratio in square brackets is 
the same in both cases and fit our spectra to the form (17), we may estimate sR,/Frn at 
A, = 36 cm. We find the maximum value of the magnitude of this ratio to be approxi- 
mately 5-1 for u* = 60 cm/s and a 8.4 m fetch. This is to be compared with our 
spectral transport values from figure 18 since these are the same as the net source 
function given by Hasselmann et al. They are, in fact, the minimum energy transfers 
if input from the wind is entirely neglected. For the above values of u* and the fetch 
the relevant value is 0.15 s-l. This is one to two orders of magnitude larger than that 
given by the gravity-gravity wave interaction. 

9. Conclusion 
The nature of short gravity waves has been studied experimentally by monitoring 

the development of the first-order Bragg line in the microwave Doppler spectrum. We 
found that short gravity waves grow exponentially with time over about three orders 
of magnitude at  rates which are higher than those suggested by capillary wave growth 
rates or by theory. For the longest wavelength observed, the growth rate was found 
to be fetch dependent, which, along with the high values of p, suggests that momentum 
transfer from shorter waves may be important in the initial growth of short gravity 
waves with wavelengths greater than about 10 cm. Spectral transport rates were 
found to agree with initial growth rates at  small wave amplitudes, indicating that the 
steady-state energy influx is the same as the initial influx when the wave is small. 

In the steady state, short gravity waves were found to develop exponentially with 
fetch in most cases until they reached a maximum amplitude at  a fetch which depended 
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on wind speed and then to decline in amplitude a t  longer fetches. Similarly, the inten- 
sity of short gravity waves in the steady state increased with wind speed until it 
reached a maximum value a t  a wind speed which depended on fetch and then declined 
a t  higher wind speeds. The maximum wave height attained by a given wave was found 
to depend only on its wavelength. This fact indicates that wave breaking caused by an 
augmented wind drift is not the limiting factor in the growth of short gravity waves. 

Upwind-going waves were observed a t  all Bragg wavelengths except 4.1 cm. At low 
winds the upwind waves were of the same order of magnitude as the downwind waves 
and, in fact, reached nearly the same height as the downwind wave for A, = 16.5 cm. 
At low winds, the upwind waves were shown to be generated by the air flow, probably 
through non-resonant pressure fluctuations. The particular tank configuration used in 
the experiments could be the determining factor in the apparently greater generation 
of these waves for A, = 16.5 cm than for other Bragg wavelengths. 

The phase speeds of downwind waves increased with wind speed to a maximum 
value which dependedonfetch and then decreased. The maximum phasespeedoccurred 
a t  lower wind speeds than the maximum wave height. Upwind waves exhibited fetch- 
independent phase speeds, the magnitudes of which decreased continuously with wind 
speed. 

Short gravity waves in the neighbourhood of the dominant wave appear to exist in a 
local equilibrium in which the influx from the wind is nearly all locally dissipated. This 
is almost certainly true for waves of wavelength 10 cm or less. The second-order, 
gravity-capillary interaction is adequate to transfer most of the energy from waves of 
wavelength shorter than 15 cm to capillary waves for viscous dissipation. For longer 
waves, this interaction dies out and must be replaced by another, as yet unspecified, 
equilibrating interaction unless the rate of influx when these longer waves are dominant 
is very much less than the growth rate in the initial stages of growth. If this latter 
condition is satisfied it is also possible that a substantial portion of the influx to the 36 
cm waves is advected away. 

A major motivation for studying wind-generated short gravity waves is the desire to 
measure the energy and momentum influx from wind to waves. This is easy enough 
when the waves are more than 10 dB smaller than their maximum value, but in the 
neighbourhood of the dominant wave, the interactions which bring about equilibrium 
have not been extricated from the overall energy balance. A tenable hypothesis is that 
the system of short gravity waves grows by direct influx from the wind until it supports 
the wind stress, whereupon the longer waves of the system begin to grow by transfer 
from the shorter waves. The longest waves which grow primarily by direct influx from 
the air flow are probably about 10 cm in wavelength. 

Preliminary measurements of temporal growth and Doppler spectra in the bistatic 
mode a t  4.375 GHz were made by T. R. Larson. The considerable benefit which the 
authors derived from the results of these initial efforts is acknowledged with pleasure. 
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